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AFIT/DSS/ENS/00M-01

Abstract

This dissertation research makes contributions towards the objective evaluation of competing
classifiers, i.e., classification systems (CSs) or pattern recognition algorithms. Automatic CSs have
been under development for almost 40 years in a wide range of military and medical applications.
During this period, scientists and engineers have developed extensive theory and algorithms for
classification, but by comparison have focused little on the testing and evaluation of their systems.
Classifier evaluation is very important in the fields of automatic target recognition (ATR) and pilot
workload classification. In order for military operators to be confident in new CSs, they must have

an objective way of testing and evaluating competing systems.

The purpose of this dissertation research is to advance the knowledge of classifier evaluation.
The basis of the research is a commonly used evaluation tool in ATR and medical applications,
called the receiver operating characteristic (ROC) curve. A proof of convergence with respect
to increasing sample size for these ROC curves is provided. This ROC convergence theorem is
important because it provides the basis for a framework for the comparison of ROC curves and
hence, the comparison of classifiers. A demonstration is given to show how this framework can
be employed using metrics that provide more insight about classifier differences than the typical
area under the curve performance index used in ROC analysis. As an alternative to ROC type
analyses, a method for using a multinomial selection procedure to evaluate competing classifiers is
presented and demonstrated. A comparison is then made between the methodologies introduced
in this research and typical approaches. Both ATR and pilot workload applications are used to
make these comparisons. A review of the interpretations of the typical performance measures
used is given along with interpretations for the proposed performance measures introduced in this

dissertation. Finally, research contributions are summarized and future directions highlighted.
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THE EVALUATION OF COMPETING CLASSIFIERS

1. Introduction
1.1 General Discussion

This dissertation research makes contributions towards the objective evaluation of competing
classifiers, i.e., classification systems (CSs) or pattern recognition algorithms. Automatic CSs have
been under development for almost 40 years in a wide range of military and medical applications.
During this period, scientists and engineers have developed extensive theory and algorithms for
classification, but by comparison have focused little on the testing and evaluation of their systems.
The issue of classifier evaluation is very important in the fields of automatic target recognition
(ATR) and pilot workload classification where data are finite. In order for military operators to
be confident in new CSs, they must have an objective way of testing and evaluating competing

systems.

1.2 Motivation

1.2.1 ATR Problem. The United States Air Force (USAF) is especially interested in
objectively evaluating algorithm upgrades to their ATR system named MSTAR (Moving and Sta-
tionary Target Acquisition and Recognition) [2]. The MSTAR system is a model-based approach
to automatic target recognition of synthetic aperture radar (SAR) imagery. Previous approaches
to the SAR ATR problem relied on vast data libraries of targets at numerous aspect and depression
angles as well as different configurations (e.g., tank hatch open/closed). The model-based approach
relies on computer generated templates for matching a specific identity to each image, using only
a small data library of actual stored SAR images of targets [21]. The MSTAR system consists of

three major components shown in Figure 1.1. These components are [41,42]:
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Figure 1.1  The three major components of MSTAR.

Table 1.1  Technical barriers facing performance estimation for MSTAR. The barriers in italics
represent the original motivation for this research.

1 Undersampling of mission space
2 ATR Performance vs. Unknowns
3 False Alarm Performance

Relationship Between Mission and
4 | Extended Operating Conditions (EOC)
Parameters
Synthetic Data
Data Truthing
Performance Theory
Joint Human/ATR Performance
Modeling & Simulation for ATR
Evaluation

© [ 0o~ O Lt

1. Focus of Attention (FOA) module identifies regions of interest (ROIs) in the image.
2. Index (IX) module generates a list of hypotheses (target/orientation) for a ROIL.
3. Predict/Extract/Match/Search (PEMS) loop performs final classification of a ROI.

A change in one of these components constitutes a new MSTAR configuration or upgrade
which must be evaluated objectively for its performance [21]. The Air Force Research Laboratory
Sensors Directorate (AFRL/SN) at Wright-Patterson Air Force Base, Ohio manages the MSTAR
program and is directing its research efforts toward investigating solutions to the technical barriers
(Table 1.1) facing performance estimation for MSTAR [3]. These technical barriers, specifically

performance theory, the undersampling of mission space, ATR performance vs. unknowns, and
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false alarm performance are the original motivation for this research. However, this research is

directly applicable to a variety of applications, including the classification of pilot workload which

is another high priority research area of the USAF.

1.2.2 Pilot Workload Classification Problem.  The issue of pilot workload is important to
the USAF because pilot overload or task saturation can decrease mission effectiveness and, in some
extreme cases, cause loss of life [9]. The modern aircraft, especially the military fighter is not an
ideal work station for human operators. The fighter pilot must perform complex cognitive tasks
while experiencing acceleration levels up to +9 Gs [34]. Between 1986 and 1995, the USAF lost 14
fighter pilots to G-induced loss of consciousness. All but one of these 14 mishaps occurred during
high workload, demanding portions of the flight. These mishaps resulted because the pilots were
overly task saturated and therefore unable to perform adequate anti-G straining maneuvers [9].
The ultimate goal of pilot workload research is to put instrumentation in every cockpit to monitor

a pilot’s workload and to warn a pilot that overload or task saturation is imminent [34].

Previous research to classify pilot workload has used psychophysiological measures such as
heart rate, heart rate variability, respiration rate, respiration rate variability, and eye blink rate [33].
Measures of on-going brain electrical activity, as measured by electroencephalograph (EEG), have
only been recently added to the arsenal of pilot workload measurements [33]. Artificial neural
networks (ANNs) have shown great promise for classifying pilot workload using both EEG and
psychophysiological measures [33-35]. ANNs have been successful because of the nonlinearity
of the workload data and the generalization capabilities of ANNs [1,33]. A significant amount of
previous research to classify pilot workload has used ANNs and, in particular, feedforward multilayer

perceptron (MLP) ANNs. A typical feedforward MLP ANN is shown in Figure 1.2.

The inputs to these feedforward ANNs typically include peripheral psychophysiological fea-
tures as well as features preprocessed in a variety of ways from EEG. Unfortunately, irrelevant

input features to an ANN can reduce classifier performance. In order to identify the important
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Figure 1.2 Feedforward multilayer perceptron ANN. The inputs z; represent the features used

for classification while z; are the outputs generated by the ANN to determine the
classification. The hidden nodes y;, the bias, and the connection weights wil”]? are

the parameters used by the ANN.

input features in a MLP ANN with many input features, the initial stages of this research resulted
in the development of the Signal-to-Noise Ratio (SNR) saliency measure and screening method
for selecting a parsimonious set of features [14]. Greene et al. [33-35] successfully applied this
SNR screening method to determine which EEG and psychophysiological features are relevant for

classifying mental workload via a feedforward ANN.

In all of the research on the mathematical modeling of pilot workload, classification accuracy
has been used as the sole performance measure to compare different models. Other evaluation tools
are available. As part of this research, these tools are reviewed and examined in order to develop

mathematically rigorous selection procedures to evaluate competing models of pilot workload.

1.3 Problem Statement

One of the problems facing the pattern recognition community is the question of how to
objectively evaluate competing classifiers. In many applications only one performance measure,
typically classification accuracy (CA) is used to distinguish between competing classifiers. For

example, consider the classification results for a notional cancer detection problem shown in Figure

14
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Figure 1.3~ Example of typical classifier comparison using notional cancer detection problem.

Table 1.2 Confusion matrices for notional cancer detection problem.

Classifier 1 (CA = 78.0%) Classifier 2 (CA = 82.0%)
CLASSIFICATION CLASSIFICATION
T Normal Cancer T Normal Cancer
R Normal 1616 504 R Normal 2120 0
U (76.2%) (23.8%) U (100%) (0.0%)
T Cancer 65 400 T Cancer 465 0
H (14.0%) (86.0%) H (100%) (0.0%)
Pra = 23.8% Pra =0%
Pp = 86.0% Pp = 0%

1.3. Classifier 2 has CA = 82.0% which means that Classifier 2 was successful 82% of the time
identifying both cancer and non-cancer images alike. If Classifier 2’s CA = 82.0% is significantly
greater (both statistically and practically) than Classifier 1’s CA = 78.0%, then Classifier 2 would

be considered the better classifier.

Depending on the particular problem, one performance measure may not always be sufficient.
Consider the classification results for the notional cancer problem displayed in more detail as confu-
sion matrices in Table 1.2. Confusion matrices (Section 2.2.1) show classification results vertically
down the columns compared to truth which is shown horizontally across the rows. Classifier 2
classified all the normal images as normal, achieving a probability of false alarm Pr4 equal to 0%.
However, Classifier 2 failed to classify any of the cancer images as cancer, achieving a probability
of detection Pp equal to 0%. While Classifier 1 failed to classify all the normal images as normal,
achieving Prq = 23.8%, Classifier 1 did identify a good percentage of cancer images as cancer,
achieving Pp = 86.0%. Classifier 1 may be the better classifier if the goal is to identify cancer

images correctly rather than achieving an overall high CA. However, even these results, which
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provide more information that classification accuracy alone, do not tell the whole story. The re-
sults shown in Table 1.2 depend upon a particular decision threshold for declaring a cancer image
as cancer. A receiver operating characteristic (ROC) curve (Figure 2.6, page 2-17 and Sections
2.2.6 and 2.3.3) shows the relationship between Pr4 and Pp as the decision threshold is varied
from a very conservative value, i.e., a value that results in zero probability of detection and zero
probability of false alarm, to a very aggressive value, i.e., a value that results in 100% probability

of detection and 100% probability of false alarm.

ROC curves are commonly used as an evaluation tool in ATR and medical applications. An
implicit assumption in the literature is that for the case of unlimited data, a limiting ROC curve
exists. The major thrust of this research is the introduction of a family of metrics for comparing
ROC curves that enable a proof of convergence for these curves, while also providing a useful tool
for distinguishing between competing classifiers. As an alternative to ROC type analyses, a method
for using a multinomial selection procedure to evaluate competing classifiers is also explored. These
two methods represent differing world views of the classifier comparison problem. The methods

are compared and contrasted on real world problems.

1.4 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter II provides a literature
review of performance assessment and performance comparison of CSs. Chapter III introduces a
family of metrics for comparing ROC curves that enable a proof of convergence for these curves.
This ROC convergence theorem is important because it provides the basis for a framework for
the comparison of ROC curves and hence, the comparison of classifiers. A demonstration is also
provided in this chapter to show how this framework can be employed using metrics that provide
more insight about classifier differences than the typical area under the curve performance index

used in ROC analysis. Chapter IV introduces a multinomial selection procedure as an alternative

1-6



to ROC type analyses for evaluating competing classifiers. Chapter V and VI provide comparisons
between the methodologies introduced in this dissertation and typical approaches on real-world
problems. Chapter V summarizes the results obtained using various methodologies for comparing
competing classifiers for an ATR application using the MSTAR public release data set. Chapter
VI summarizes the results obtained using various methodologies for a pilot workload classification
problem. Chapter VII provides interpretations of the typical performance measures used in com-
paring competing classifiers as well as interpretations for the new performance measures introduced
in this dissertation. Research contributions are summarized and future directions highlighted in
Chapter VIII. Appendix A contains the proof of the ROC convergence theorem and Appendix B
provides a glossary of acronyms and abbreviations. This research has resulted in many publica-

tions [1-7,14,19].
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II. Literature Review

2.1 Qverview

This chapter reviews the pertinent literature on the two main topic areas required to complete
this dissertation research—performance assessment and performance comparison of classification
systems (CSs). The majority of the following discussion is a summary of a technical report entitled,
“Survey of Statistical Analysis and Experimental Design in ATR Evaluation” [2]. Therefore, the
literature review presented here has a definite ATR slant. However, the performance assessment
and performance comparison methods described in this chapter apply equally as well to a wide

variety of other classification and detection problems.

This chapter is organized into two main sections. The performance assessment section con-
tains a review of typical classifier performance assessment techniques, which include the use of
confusion matrices, error-reject curves, confidence intervals, hypothesis testing, and receiver oper-
ating characteristic (ROC) curves. The section on performance comparison begins by describing
the comparison of confusion matrices for competing classifiers. This section also discusses the com-
parison of classifiers using non-sequential and sequential hypothesis testing. Special attention is
given in this section to the discussion of the comparison of different ROC curves representing dif-
ferent classifiers. Finally, the last part of this section presents an overview of multinomial selection

procedures.

2.2 Performance Assessment

2.2.1 Confusion Matrices.  The easiest way to report the classification results of a CS is
through the use of a discrimination event matrix (term used by ATR community [11]) or more com-
monly referred to as a confusion matrix in the pattern recognition community [24]. The confusion
matrix is a square matrix with a single row and single column for each category defined in the data

set. The rows of the matrix relate to the actual (ground truth) membership while the columns give
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Table 2.1  Example Confusion Matrix.
Classified As (Reported)

Target 1 | Target 2 | Target 3 | Non-Target
Target 1 24 0 1 9]
‘(A‘chl‘ﬁ) Target 2 1 % 1 3
Target 3 2 3 20 5
Non-Target 1 3 4 82
Table 2.2  Example Population Confusion Matrix.
Classified As (Reported)
Target 1 | Target 2 | Target 3 | Non-Target
Actual Target 1 80.0% 0.0% 3.3% 16.7%
(Truth) Target 2 3.3% 83.3% 3.3% 10.0%
Target 3 6.7% 10.0% 66.7% 16.7%
Non-Target | 1.1% 3.3% 4.4% 91.1%

the predicted (CS reported) membership. Table 2.1 illustrates the confusion matrix format for a
notional ATR example. The (i, ) entry in the matrix is the number of ATR reports on target j
(predicted classifications) that correspond to ground truth target ¢ (actual class membership). For
example, the (3,1) entry of the matrix indicates that the ATR reported two target 1 types which
were actually target 3 types. A perfect ATR system for this example would have (30, 30, 30, 90)
along the diagonal and zeros elsewhere. Rather than using the raw numbers in the confusion ma-
trix as in Table 2.1, some CS designers will report the population counterpart (conditioned on the
rows) with entries that are percentages as indicated in Table 2.2. Another reporting alternative is
to summarize both raw number and population percentage results in terms of clutter (non-target)

and target in a simple 2 x 2 composite matrix (Table 2.3).

The strength of the confusion matrix is that it not only indicates how well the CS is doing

over the entire data set, but it also gives clues as to where the errors are being made. Investigating

Table 2.3  Example Composite Confusion Matrix.
Classified As (Reported)

Clutter Target
82 8

?{ﬁjﬁ) Clitter | 9119 | (3.9%)
Target 13 7

(14.4%) (85.6%)
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Figure 2.1  Typical gray level confusion matrices. (a) shows a good CS with few classification
errors, (b) shows a poor CS with many classification errors, and (c) shows a CS with
structured errors.

where these errors occur can be a useful method for determining which type of target data to collect
if more data is considered necessary to better distinguish the target distribution from the clutter
distribution and hence improve the CS performance. The drawbacks of the confusion matrix are
that it is only a visualization of the raw data for one specific decision threshold and it does not

provide a measure of effectiveness which could be used to compare various CSs.

The standard confusion matrix is not, necessarily, the best visualization tool available. Better
means for visualizing the raw data to quickly identify the distribution of errors that a CS makes
are available. Swingler [65] shows how it is possible to plot the confusion matrix using gray levels
to indicate frequency as depicted in Figure 2.1. The darker the shading of a square in the grid,
the more frequently the classifier produced an answer listed on the same column as the square
when the correct answer was that denoted by the square’s row. A near perfect classifier produces a
confusion matrix with a very dark right hand diagonal and very pale entries elsewhere. These gray
level confusion matrices enable the evaluator to quickly identify the distribution of errors that a
classifier makes and thereby visualize its accuracy and simultaneously determine clues as to which
aspect of the classifier’s task needs improvement. For example, Figure 2.1 depicts three typical
gray level confusion matrices. Gray level confusion matrices for competing classifiers could be

compared side by side or a gray level matrix for the confusion matrix formed by computing the
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difference between the competing classifiers’ confusion matrices could be examined to determine

visually where the two classifiers differ.

2.2.2  FError Histograms.  For classifiers with several outputs or in situations where the size
of the errors is more important than their type, an error histogram provides another quick method
for visualizing the distribution of errors [65]. An error histogram shows the count of the frequency
with which a classification error falls within a set of bandwidths, i.e., within a certain range of
error sizes. These bandwidths or error sizes are the ranges of possible differences between the
actual target class and the predicted class for each exemplar. For a classification probability score
from zero to one, these bands must be split into a set of small bins. This error binning technique
contrasts the setting of class thresholds used to classify the exemplars and generate the confusion
matrix. For a simple two class confusion matrix, if the predicted classification score for a particular
exemplar exceeds some preset threshold (e.g., 0.5), then that exemplar is classified as class 2. For
the error histogram, the difference between a given exemplar’s predicted classification probability
and each actual target output class probability (e.g., if actual class is 2, then target probabilities
are: 0.0 for Class 1 and 1.0 for Class 2) is used. A healthy classifier will show a peak at zero, quickly
falling off as the number of errors of greater magnitude diminishes. For a data set with normally
distributed noise, the error histogram should have the appearance of a normal distribution. Figure
2.2, shows an example of an error histogram for a notional classification problem. This histogram
is constructed by splitting the real-valued classification errors (-1 to 1) into 21 bins and counting
the number of errors in each bin. Since the majority of the errors are made in the small error bins,

the notional error histogram signifies a healthy classifier.

2.2.3 FError-Reject Curves. Another technique used in pattern recognition is to allow
classifiers to make doubt reports. Rather than making a firm classification, for example, of target
or clutter, the classifier is permitted to identify exemplars which are too hard to classify, i.e., the

classification output falls in a gray or uncertain area. These difficult exemplars are then rejected by
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Figure 2.2  Error Histogram example for a well trained classifier

the classifier until further measurements can be made which permit a more definite classification
or perhaps these difficult exemplars are passed on to a second classifier specifically designed to deal
with the gray area of classification [60]. Using the doubt option, a loss function, L(k,!) can be
defined as the loss incurred by making decision [ if the true class is k (out of total of K classes).

If every misclassification is equally serious, then the loss function is given by

0 if {=k (correct classification)
L(k,l)=14 d if |="D (classification in doubt) (2.1)

1 if l#Fk and l€{1,...,K} (incorrect classification)

where k=1,... ,K and [ € {1,...,K} is a reasonable choice [60]. The total risk for the optimal

decision rule is called the Bayes risk (R) and is defined by

R=pmc+d- pqg (2.2)

where p,. is the probability of misclassification or error, p4 is the probability of doubt, and d is
the rejection threshold or the cost of being in doubt. The plot of p,,. versus py for varying d, is

called the error-reject curve and is illustrated in Figure 2.3.  The error-reject curve is a useful
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Figure 2.3  Error-Reject tradeoff curve.

performance tool for understanding the error-reject tradeoffs for a given classifier for the assumed
cost d of rejecting data that is difficult to categorize [60]. Since the slope of the error-reject tradeoff
curve is the value of the rejection threshold [60], the tradeoff is most effective for low levels of

rejection and becomes less effective for high levels of rejection when the error rate is very low [22].

2.2.4 Confidence Intervals. A CS’s performance is typically assessed using a set of
probabilities. The most common performance measure used is classification accuracy (CA) or the
probability of success (pg), i.e., the probability of identifying targets and non-targets alike. For
an ATR application [10,21,61], the typical probabilities used are the probability of detection (pp),
probability of correct classification (pcc), probability of correct identification (prp), and probability
of false alarm (pr4). AFRL defines correct detection as correctly declaring that a target in a region
of interest (ROI) is, in fact, a target. Conversely, a false alarm, or incorrect detection, occurs when
the ATR declares clutter, such as trees, as a target. AFRL defines correct classification, as correctly
classifying a detected target as a member of its actual target class regardless of the specific target
type. For example, MSTAR is being designed to operate under realistic military scenarios, called

extended operating conditions (EOC’s), which include up to 20 specific target types in five different



Table 24  MSTAR EOC Class and Target Types

Main Armored Self- Mobile
Class Battle Personnel Propelled Truck Missile
Tank Carrier Gun (T) Launcher
(MBT) (APC) (SPG) (MML)
BMP2
M2 M548
?;‘;)geet 1?4712 M113 ﬁi?g M35 SCUD
BTR60 HMMWV
BTRT70

classes. Thirteen (the types used in the first phase of the MSTAR program) of these 20 target types

are shown in Table 2.4 [21].

If an M2 armored personnel carrier (APC) image is inputted and MSTAR reports APC as the
image class, a correct classification is obtained, even if MSTAR incorrectly identifies the image type
as a M113. Correct Identification, a subset of classification, is naming the specific alphanumeric
target designator. For example, if a T72 main battle tank (MBT) image is inputted and MSTAR
identifies the image as a T72, a correct identification [21] is obtained. The typical performance
probabilities of interest (ps,pp, Pce, Prp, Pra) can be estimated as functions of the elements of
the confusion matrix and the ground truth data [10,21]. The estimation equations are listed below
along with sample calculations for the data in Table 2.1, where for illustration target 1 is assumed

to be a T72, target 2 a M1, and target 3 a M2.

number of target and clutter images correctly classified 159

CA=ps = total number of target and clutter images 180 883%  (23)
. number of target images declared as targets 77

= =— = 8b. 2.4

Pp number of target images 90 85.6% (24)

poc = number of correctly classified target images; poo(MBT) = 50 — 64.9% (2.5)

number of detected target images 77
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number of correctly identified target images; 1p(TT2) = % _ 3199 (2.6)

bip = number detected target images

. number of clutter images declared as targets 8 8.9% 2.7)
Pra= number of clutter images —90 77 '

Often, performance measures such as the probabilities of success are reported as single numbers
as calculated above. For example, an ATR designer might say that his system has a classification
accuracy of 88.3 percent based on the probability of success estimated above. However, this is just
a point estimate. Since the ATR is tested on a finite data set, the true classification accuracy is
probably not 88.3 percent. Instead, the accuracy is more likely in some interval centered about the
point estimate. For this example, a 95 percent confidence interval, assuming a binomial distribution
for the number of successful classifications, is given by the interval [0.83 0.93]. In other words, if
the ATR designer computed interval estimates from many different samples, then in the long run,
he would expect about 95 percent of the intervals to include the true value for the accuracy of the
ATR system. Hence, the confidence interval describes the experimental uncertainty in estimating
the true ATR classification accuracy. ATRWG paper no. 88-006 [11] provides an excellent review
of confidence intervals in ATR performance evaluation. The general procedure for construction of
confidence intervals is to first postulate an underlying distribution. In ATR as in many CSs, the
distributions which are probably of most interest are the Binomial, Poisson, and Gaussian. As an
illustration, the concepts and calculation for a confidence interval for classification accuracy (CA),
i.e., the probability of success parameter, pg, is summarized below using the Binomial distribution

to model the number of successful classifications.
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Suppose an ATR is designed and then tested on an independent sample. For each image

tested, there are two possible outcomes

0, if image incorrectly classified
n= (2.8)
1, if image correctly classified

with associated probabilities: P(0) = 1 — p and P(1) = p, which means 7 is a Bernoulli random
variable. For a series of these independent, identical trials, the Binomial random variable Y is the

number of successful classifications in n trials, i.e., ¥ =binomial(n, p), where

and the expectation and variance of Y are given by

E(Y)=np and Var(Y)=np(l - p). (2.10)

An unbiased estimate for p, the true classification success rate (probability of success), can be made

using the definition in Equation 2.3 above as shown in Equation 2.11 below

Y
p= —. 2.11
p=— (2.11)
Now, p is an unbiased estimator for p so
Y 1
D) = — | = - =D. 2.12
E()=E (n> ~E(Y)=p (2.12)
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Using the variance expression for p yields

Var(p) = Var <Z) _ L Var(y) = 2L=P) (2.13)

n n? n

and the usual method of substituting sample values for unknown parameters in the expression for

the variance, one can approximate {1 — a) confidence intervals for p as

P2y pa-p) (2.14)

2 n

where the normal approximation is used (assuming large test sample size; n > 30) for the binomial.

For the example in Table 2.3, with « = .05, the following result referred to above is obtained

P =0.883+£0.047 or 0.83 < p < 0.93. (2.15)

The strength in using a confidence interval is that it provides a quantifiable measure of the
accuracy of the evaluation process. The confidence interval accounts for the sampling error of
the testing experiment. When comparing the performance of various CSs tested under the same
conditions, confidence intervals provide a simple measure of the variations in the performance

results for the individual CSs.

One limitation of confidence intervals is that they can only indicate what can be expected in
the future when one performs exactly the same test under the exact same conditions. For example,
in their work [61], Ross et al. distinguish between data sets and conditions for an ATR application.
They define a condition as a subset of a multi-dimensional space where the dimensions of the space
are the specific conditions that may affect the performance of an ATR system. These dimensions
can be grouped into those related to the target, environment, and sensor, as illustrated for s